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1 Notation

1.1 Resistance profiles

Consider a cancer therapy consisting of D targeted drugs, indexed i =
1, . . . , D. The resistance properties of each tumor cell can be summarized
by its resistance profile, a binary string of length D, with 1’s indicating
which drugs the cell is resistant to. For example, the resistance profile 010
indicates that a cell is resistant to the second of three drugs, but sensitive to
the first and third. The tumor is initiated by cells of type 0 . . . 0—sensitive
to all drugs. Other profiles arise through resistance mutations. We let ni
denote the number of point mutations that would confer resistance to drug
i. We also allow for the possibility that one point mutation may confer
resistance to multiple drugs. The number of point mutations that would
confer resistance to drugs i1, . . . , im (but not to the other D − m drugs),
with 1 ≤ i1 < . . . < im ≤ D, is denoted ni1...im . We disregard the possibility
of losing drug resistance through mutation. Also, while our notation reflects
an assumption that drug resistance arises via single point mutations, our
results can readily be applied to situations in which multiple mutations are
required for resistance to a single drug.

1.2 Branching process model

As described in the main text, we model the evolution of resistance as a
stochastic branching process, in which each resistance profile is identified as
a distinct type. Prior to treatment, all cell types divide at rate b and die
at rate d. Thus the tumor expands at rate r = b − d prior to treatment.
Treatment is initiated when the tumor has reached a detection size of M
cells. During treatment, we suppose that cell types sensitive to at least
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one drug (i.e. those with resistance profiles other than 1 . . . 1) divide and
die at rates b′ and d′, respectively, with r′ = b′ − d′ < 0. Fully resistant
cells (those with profile 1 . . . 1) continue to divide and die at rates b and d,
respectively. (More generally, one could suppose that each resistance profile
has distinct birth and death rates during treatment, but we do not consider
such generality here.)

With each reproduction, one of the daughter cells acquires each potential
point mutation with probability equal to the point mutation rate u. (Our
model assumes that only one of the daughter cells can acquire mutations,
which amounts to rescaling the mutation rate by a factor of two.) Thus,
for each combination of drugs i1, . . . , im, the probability that one of the
ni1...id resistance mutations occurs in a daughter cell is (1 − u)ni1...im ≈
1 − ni1...imu. (This approximation assumes that uni1...im � 1—that is,
resistance mutations are rare—so that the possibility of multiple resistance
mutations in a single reproduction event can be disregarded.)

1.3 Paths to full resistance

We are most interested in the emergence of simultaneous resistance to all D
drugs, leading to treatment failure. Such multi-drug resistance may occur
via multiple paths, where a path is a sequence of resistance mutations leading
from 0 . . . 0 (no resistance) to 1 . . . 1 (resistance to all drugs). An example
for three drugs is the path 000→ 010→ 111 (resistance to drug 2 first, then
1 and 3 simultaneously). Each path involves some number m of mutations,
1 ≤ m ≤ D. Along a path there are m + 1 resistance profiles, indexed
j = 0, . . . ,m. The initial resistance profile 0 . . . 0 is indexed j = 0, while the
final, 1 . . . 1, is indexed j = m. The number of potential point mutations
that would lead from profile j − 1 to profile j, along a particular path, is
denoted νj . The number of potential point mutations that would lead from
profile j−1 to a profile not on the path in question is denoted ηj . In short, νj
and ηj are the numbers of “on-path” and “off-path” mutations, respectively,
from profile j − 1. So, for example, for the path 000→ 010→ 111 we have

ν1 = n2

η1 = n1 + n3 + n12 + n13 + n23 + n123

ν2 = n13 + n123

η2 = n1 + n3 + n12 + n23.

Thus, with each division of a cell of profile j − 1, we have the following
probabilities of events (assuming (νj + ηj)u � 1, i.e. resistance mutations
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are rare):
1− (νj + ηj)u two daughters of profile j − 1

νju one daughter of profile j − 1 and one of profile j

ηju one daughter of profile j − 1 and one off-path daughter.

1.4 The rare-mutation, large-tumor-size limit

In human cancers, the point mutation rate is very small (u ∼ 10−9) and the
number of cells in a detectable tumor is very large (M ∼ 109). Therefore,
we concentrate on results that are asymptotically exact under the following
limits:

u→ 0, M →∞, Muk = constant. (1)

Above, k will be 1 or 2, depending on the result being presented. We will

represent such a limit by the arrow
M→∞−−−−−−−→

Muk=const.
.

2 Number of resistant mutants at detection

We are first interested in following question: how many cells in the tumor
are resistant to all D drugs at the time of detection?

2.1 Pathwise analysis

We begin by examining a single path, starting with fully sensitive cells (pro-
file 0 . . . 0, indexed j = 0), and ending with fully resistant cells (profile 1 . . . 1,
indexed j = m). For each j = 0, . . . ,m, we let xi(t) denote the expected
number of cells of profile j at time t. These expected numbers satisfy the
following system of differential equations:

ẋj =
(
r − b(νj+1 + ηj+1)u

)
xj + bνjuxj−1. (2)

Above, we set x−1(t) = 0 for all t and ν0 = η0 = νm+1 = ηm+1 = 0. The
initial conditions are x0(0) = 1, and xj(0) = 0 for j = 1, . . . ,m.

We assume for the moment that νk + ηk 6= ν` + η` for all pairs k, ` =
1, . . . ,m with k 6= `. Under this assumption, the solution to the system (2)
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is given by

xj(t) =



e(r−b(ν1+η1)u)t j = 0

ert

(
j∏

k=1

νk

)
j+1∑
k=1

e−b(νk+ηk)ut∏
1≤`≤j+1
`6=k

(ν` + η` − νk − ηk)
1 ≤ j ≤ m− 1

ert

(
m∏
k=1

νk

) 1
m∏
`=1

(ν` + η`)

−
m∑
k=1

e−b(νk+ηk)ut

(νk + ηk)
∏

1≤`≤m
`6=k

(ν` + η` − νk − ηk)

 j = m.

(3)

We note that the above expressions for xj(t) are expectations over all
possible trajectories, including those in which the tumor becomes extinct.
Since we are only interested in tumors that grow to detectable size, we divide
these expressions by the tumor survival probability, which is r/b. This yields
an exact expression for the expected number of cells of each type at time t,
conditioned on the survival of the tumor.

However, we wish to know the expected number of resistant cells not at
a fixed time from when the tumor was initiated, but at the moment the total
number of cells reaches M . The time T for the tumor to reach M cells is a
random quantity; however, we can approximate T by using the deterministic
growth law x(t) = b/r ert for the total population of cells. (In other words,
we set the total cell population equal to its expected value conditioned on
non-extinction.) We then solve x(T ) = M , yielding the approximation

T ≈ 1

r
log(Mr/b). (4)

Simulation results (not shown) suggest that this approximation is exact in
the large tumor size, small mutation rate limit (1).

We approximate the expected number xdetm of fully resistant cells at de-
tection (arising via this particular path) by substituting approximation (4)
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for T into the expression for xm(t) given in (3). This yields

xdetm = M

(
m∏
k=1

νk

)
1

m∏
`=1

(ν` + η`)

−
m∑
k=1

e−
b
r
(νk+ηk)u log(Mr/b)

(νk + ηk)
∏

1≤`≤m
`6=k

(ν` + η` − νk − ηk)

 .

(5)
To simplify the above expression, we define µ = (b/r)u log(Mr/b). We

note that µ→ 0 in the rare mutation, large tumor size limit u→ 0, M →∞,
Mu = constant. Substituting µ into (5) and replacing e−(νk+ηk)µ by its
Taylor expansion, we obtain

xdetm = M

(
m∏
k=1

νk

)
1

m∏
`=1

(ν` + η`)

−
m∑
k=1

∞∑
s=0

µs

s!
(−νk − ηk)s

(νk + ηk)
∏

1≤`≤m
`6=k

(ν` + η` − νk − ηk)


= M

(
m∏
k=1

νk

)


1
m∏
`=1

(ν` + η`)

−
∞∑
s=0

µs

s!

m∑
k=1

(−νk − ηk)s

(νk + ηk)
∏

1≤`≤m
`6=k

(ν` + η` − νk − ηk)

 .

(6)

For any collection of m distinct nonzero real numbers α1, . . . , αm—in our
case, we are interested in αj = νj + ηj—the following combinatorial identity
holds:

m∑
j=1

(−αj)s

αj
∏

1≤`≤m
6̀=j

(α` − αj)
=


1∏m

j=1 αj
s = 0

0 1 ≤ s ≤ m− 1

−1 s = m.

(7)

We save the proof of this identity for Section 7. Using this identity to
simplify (6), we obtain

xdetm = M

 m∏
j=1

νj

 µm

m!
+O(µm+1). (8)
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Interestingly, this formula does not involve the numbers ηj of off-path mu-
tations. As a consequence, we see that this result does not depend on the
assumption that νk + ηk 6= ν`+ η` for k 6= `, and holds regardless of whether
this condition is satisfied.

2.2 One drug

For single-drug therapy (D = 1), there is only one path to resistance, and
the expected number of resistant cells at detection is given by (5), which
simplifies to

xdetres = M(1− e−n1µ) = Mn1µ+O(µ2). (9)

(We recall from above that µ = (b/r)u log(Mr/b).)

2.3 Two drugs

For two-drug therapy, there are three paths to consider:

Path 1: 00 → 10 → 11 In this case we have ν1 = n1 and ν2 = n2 + n12.
Using (8) we obtain

xdetres,00→10→11 ≈Mn1(n2 + n12)
µ2

2
+O(µ3).

Path 2: 00→ 01→ 11 Similarly to path 1, we obtain

xdetres,00→01→11 ≈Mn2(n1 + n12)
µ2

2
+O(µ3).

Path 3: 00→ 11 Here ν1 = n12. Using the exact solution (5) we obtain

xdetres,00→11 = M(1− e−n12µ) ≈M
(
n12µ− n212

µ2

2

)
+O(µ3).

Above, we have taken a second-order Taylor expansion of e−n12µ.
Aggregating the above results, we obtain the following expression for the

total expected number of resistant cells at detection:

xdetres = M

{
n12µ+

[
2n1n2 + n12(n1 + n2 − n12)

]µ2
2

}
+O(µ3). (10)
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2.4 Arbitrary number of drugs with no cross-resistance

Suppose a therapy consists of D ≥ 1 drugs, and there are no mutations that
simultaneously confer resistance to multiple drugs. In this case, using (8),
we obtain a remarkably simple formula for the expected number of resistant
cells at detection:

xdetres = Mn1 · · ·nDµD +O(µD+1). (11)

For example, in the case of triple therapy with no cross-resistance, we expect
approximatelyMn1n2n3µ

3 resistant cells at detection (accurate to order µ4).
Notice that the factorial in (8) is cancelled by the number, D!, of possible
paths to full resistance.

3 Generating functions for branching processes

Generating functions are a powerful tool for analyzing stochastic processes.
In a generating function, the probabilities of different events are recorded
as coefficients in a power series, allowing these probabilities to be easily
manipulated. Here we introduce the generating functions for the one- and
two-type branching processes, which we will later use to derive probabilities
of resistance and of treatment success.

3.1 One-type branching process

We first consider the one-type branching process. We introduce the random
variable Y (t) to represent the number of cells at time t, given that there was
one such cell at time t = 0. The generating function for this process is then
defined as

φm=1(z; t) ≡ E
[
zY (t)

]
≡
∞∑
y=0

P[Y (t) = y] zy.

In words, the generating function is a time-dependent power series in which
the coefficient of zy equals the probability that there were y cells at time
t. There is a well-known closed-form expression for this generating function
(Athreya and Ney, 2004):

φm=1(z; t) =
d(1− z) + (zb− d)e−rt

b(1− z) + (zb− d)e−rt
.

In particular, the probability that a lineage of type 1 cells survives for time
t is given by

1− φm=1(0; t) =
r

b− de−rt
. (12)
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3.2 Two-type branching process

We now turn to a branching process involving two types, labeled 1 and 2,
with one-way mutation of rate uν2 from type 1 to type 2. This process can
be described by the following rates:

1→ 11 rate b

1→ ∅ rate d

1→ 12 rate buν2

2→ 22 rate b

2→ ∅ rate d.

(13)

We introduce the random variables Y1(t) and Y2(t) to represent the numbers
of type 1 and type 2 cells at time t, given that the process was initiated with
a single type 1 cell at time t = 0. The generating function for this process
is defined as

φm=2(z1, z2; t) ≡ E
[
z
Y1(t)
1 z

Y2(t)
2

]
≡

∑
y1,y2≥0

P [Y1(t) = y1, Y2(t) = y2] z
y1
1 z

y2
2 .

In words, the generating function is a time-dependent power series in the
variables z1 and z2, with the coefficient of zy11 z

y2
2 equal to the probability

that there are y1 cells of type 1 and y2 cells of type 2 at time t.
A closed-form expression for this branching process was discovered by

Antal and Krapivsky (2011). To state this solution, we first define the
following constants:

α =
1

2

[
−(1− uν2) +

√
(1− uν2)2 + 4uν2

b

r

]
,

β = 1 +

√
(1− uν2)2 + 4uν2

b

r
.

Next, we let F denote the hypergeometric function 2F1, and we define
the following functions of a real number x:

F1(x) = F (α, 1 + α, β;x),

F2(x) = F (1 + α− β, 2 + α− β, 2− β;x),

F3(x) =
α(1 + α)

β
F (1 + α, 2 + α, 1 + β;x),

F4(x) =
(1 + α− β)(2 + α− β)

2− β
F (2 + α− β, 3 + α− β, 3− β;x).
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Third, we define the following quantities, which depend on the arguments
z1, z2, and t, of the generating function φm=2(z1, z2; t):

y0 = 1− r

b(1− z2)
,

κ =
1

y0

[
b

r
(z1 − 1)− α

]
,

y = y0e
−rt,

C = yβ0
κF1(y0)− F3(y0)

(1− β − κy0)F2(y0) + y0F4(y0)
.

Finally, we state Antal and Krapivsky’s (2011) formula for the generating
function of the two-type branching process in terms of the above quantities
and functions:

φm=2(z1, z2; t) = 1 +
r

b
α+

r

b

yβF3(y) + C(1− β)F2(y) + CyF4(y)

yβ−1F1(y) + CF2(y)
. (14)

4 Probability of resistance at time of detection

We now turn to the question of whether at least one resistant cell exists at
the time the tumor reaches detectable size. Again we consider each path to
resistance separately.

4.1 One-step paths

A number of works (Coldman and Goldie, 1983; Dewanji et al., 2005; Ko-
marova and Wodarz, 2005; Iwasa et al., 2006) have investigated the proba-
bility that resistance exists at the start of treatment, in the case that this
resistance can be achieved through a single mutation. Here we follow the
approach of Dewanji et al. (2005), in which we suppose that type 0 (sensi-
tive) cells grow deterministically, and that type 1 (resistant) cells arise as
a Poisson process, with rate depending on the current number of type 0
cells. Specifically, we approximate the growth of type 0 cells (conditioned
on non-extinction) by

x0(t) =
b

r
ert. (15)

Noting that type 0 cells divide at rate b, and each division produces a type
1 mutant with probability uν1, we suppose that type 1 (resistant) cells arise
as a Poisson process with rate buν1x0(t) at time t. Each line of type 1 cells
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thus created is described by a one-type branching process initiated at the
time of mutation.

We let the random variable X1(t) denote the number of type 1 cells
at time t. The probability that there are no resistant cells at the time of
detection (T = 1/r log(Mr/b)) is equal to the probability that none of the
type 1 mutations that arise in the interval [0, T ] survive to time T . The
probability that a single type 1 mutation arising at time 0 ≤ s ≤ T survives
until time T is given by 1− φm=1(0;T − s). Recalling that these mutations
arise at rate buν1x0(s) for 0 ≤ s ≤ T , we can write this probability as

P
[
X1(T ) = 0

]
= exp

{
−
∫ T

0
buν1x0(s)

[
1− φm=1(0;T − s)

]
ds

}
.

Substituting from (12) and simplifying, we arrive at

P[X1(T ) = 0] = exp

{
−Muν1

b

d
log

[
b

r

(
1− d

rM

)]}
M→∞−−−−−−−→

Mu=const.
exp

[
−Muν1

b

d
log

(
b

r

)]
.

(16)

This result was also obtained by Iwasa et al. (2006).

4.2 Two-step paths

We can apply similar methods to two-step paths (m = 2). The probability
that, time t after a type 1 cell arises, this cell’s lineage includes at least one
surviving type 2 cell, can be written as 1 − φm=2(1, 0, t). Thus a type 1
mutation that arises at time s, 0 ≤ s ≤ T , will give rise to at least one living
type 2 cell at time T , with probability 1− φm=2(1, 0, T − s). Following the
arguments in the m = 1 case, the probability of no type 2 cells at time T
can be written as

P
[
X2(T ) = 0

]
= exp

{
−
∫ T

0
buν1x0(s)

[
1− φm=2(1, 0;T − s)

]
ds

}
. (17)

4.3 Low-mutation expansion for two-step paths

For low mutation rates, we can expand (17) as follows. First, we work
through the construction of φm=2(z1, z2; t), substituting z1 = 1 and z2 = 0,
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and expanding all quantities and functions to low orders in u. This yields:

α =
b

r
uν2 +O(u2),

β = 2 +

(
2
b

r
− 1

)
uν2 +O(u2),

y0 = 1− r

b
,

κ = − α
y0

= −uν2
b2

r(b− r)
+O(u2),

F1(x) = 1 +O(u),

F2(x) = 1− x b/r − 1

2b/r − 1
+O(u),

F3(x) = − b
r
uν2

1

x

[
1 +

1

x
log(1− x)

]
+O(u2),

F4(x) = − b/r − 1

2b/r − 1
+O(u),

C = uν2
b

r
log

(
b

r

)
+O(u2),

y(t) =
(

1− r

b

)
e−rt.

Combining the above expansions yields the following expansion for φm=2(1, 0; t)−
1:

φm=2(1, 0; t)− 1 = −uν2
log
[
b
r −

(
b
r − 1

)
e−rt

](
1− r

b

)
e−rt

+O(u2). (18)

Substituting (18) into formula (17) for the probability of no resistance
yields

P
[
X2(T ) = 0

]
= exp

{
−Mu2ν1ν2

b2

b− r

∫ T

0
log

[
b

r
−
(
b

r
− 1

)
e−r(T−s)

]
ds

}
+O(u3)

(19)

Above, we have also used the substitution M = b/r erT . We simplify the
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integral in (19) as follows:∫ T

0
log

[
b

r
−
(
b

r
− 1

)
e−r(T−s)

]
ds

=

∫ T

0
log

[
b

r
−
(
b

r
− 1

)
e−rt

]
dt

= log

(
b

r

)
T +

∫ T

0
log
[
1−

(
1− r

b

)
e−rt

]
dt.

The remaining integral above is positive and bounded above by∫ ∞
0

log
[
1−

(
1− r

b

)
e−rt

]
dt =

1

r
Li2

(
1− r

b

)
,

where Li2 is the dilogarithm function. In particular, this bound is con-
stant with respect to T , and therefore becomes negligible in comparison to
log(b/r)T as T becomes large. This implies the following asymptotic formula
for the integral in (19):∫ T

0
log

[
b

r
−
(
b

r
− 1

)
e−r(T−s)

]
ds −−−−→

T→∞
log

(
b

r

)
T.

Finally, substituting the above result into (19), and additionally substituting
T = log(Mr/b)/r, we obtain

P
[
X2(T ) = 0

]
≈ exp

[
−Mu2ν1ν2

b2

r(b− r)
log

(
b

r

)
log

(
Mr

b

)]
. (20)

Our formulas (17) and (20) improve on results obtained by Haeno et al.
(2007), as we discuss in Section 6.2.

4.4 Overall probability of resistance

One drug For a single drug, the probability that resistance exists at the
time of detection can be obtained directly from (16) with ν1 = n1, yielding

pres = 1− exp

{
−Mun1

b

d
log

[
b

r

(
1− d

rM

)]}
M→∞−−−−−−−→

Mu=const.
1− exp

[
−Mun1

b

d
log

(
b

r

)]
.
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Two drugs For two drugs, we must consider the one-step path 00 → 11
and the two two-step paths 00 → 10 → 11 and 00 → 01 → 11. The
probability that resistance exists at the time of detection equals one minus
the probability that no cells of profile 11 are generated via any of these
paths. We write this probability as pres = 1− p1p2, where

p1 = exp

[
−Mun12

b

d
log

(
b

r

)]
is obtained from (16) with ν1 = n12, and

p2 ≈ exp

[
−Mu2

(
2n1n2 + n12(n1 + n2)

) b2

r(b− r)
log

(
b

r

)
log

(
Mr

b

)]
is obtained from (20) with ν1 = n1, ν2 = n2+n12 for the path 00→ 10→ 11,
and ν1 = n2, ν2 = n1 + n12 for the path 00→ 01→ 11. Rewriting in terms
of s = 1− d/b yields the formulas for p1 and p2 presented in the main text.

5 Probability of tumor eradication

We now turn to the ultimate success or failure of multi-drug therapy. We
define the therapy as successful if the tumor ultimately becomes extinct;
otherwise, the tumor grows exponentially and there is a relapse. This differs
from the question of analyzed in Section 4—the probability that resistance is
present at the start of treatment—for two reasons. First, resistance that ex-
ists at the start of treatment may disappear due to stochastic drift. Second,
new resistance mutations may appear during therapy.

We recall that, for all cell types sensitive to at least one drug (that is, all
cells with resistance profiles other than 11 . . . 1), the birth and death rates
during treatment are denoted b′ and d′, respectively, with r′ = b′ − d′ < 0.
Cells with resistance to all drugs are unaffected.

We separate the question of ultimate treatment outcome into resistance
arising during tumor expansion and resistance arising during treatment. We
let p↑ and p↓ denote the probability that no resistance mutations leading
to relapse arise during expansion and treatment, respectively. The overall
probability of eradication can then be written

perad = p↑p↓.

5.1 Resistance arising during expansion

We further separate into paths leading toward resistance.
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5.1.1 One-step paths

As in Section 4.1, we suppose that type 1 (resistant) cells arise as a Pois-
son process with rate buν1x0(t) at time t, with x0(t) = b/r ert. We also
recall that each type 1 (resistant) mutation that arises has probability r/b
of ultimately escaping stochastic drift (leading to unchecked tumor growth
and patient relapse). Using similar reasoning to Section 4.1, the probability
that no resistance mutations leading to treatment failure arise by this path,
during tumor expansion, can be written as

p↑m=1 = exp

[
−
∫ T

0
buν1x0(s)

r

b
ds

]
= exp

[
−buν1

∫ T

0
ers ds

]
= exp [−uν1(M − b/r)]
M→∞−−−−−−−→

Mu=const.
e−Muν1 . (21)

This result was previously obtained by Komarova (2006, Appendix A).

5.1.2 Two-step paths

During the treatment phase, the lineage of each type 2 (fully resistant)
cell will ultimately disappear with probability χ2 = d/b. For a type 1 cell
that is present at the start of treatment, the probability χ1 that its lineage
will ultimately disappear can be obtained from the results of Antal and
Krapivsky (2011):

χ1 =
1

2

1 +
d′

b′
+ uν2

r

b
−

√(
1 +

d′

b′
+ uν2

r

b

)2

− 4
d′

b′


= 1 + uν2

r

b

b′

r′
+O(u2).

(22)

Above, b′ and d′ are the birth and death rates, respectively, of type 1 cells
during treatment, and r′ = b′ − d′.

Suppose a type 1 mutation gives rise to y1 type 1 cells and y2 type 2 cells
at the time of detection. Then the probability that all lineages of these cells
disappear during treatment (and thus none of them cause eventual relapse)
is χy11 χ

y2
2 . Overall, for a type 1 mutation that arises at time s, 0 ≤ s ≤ T ,
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the probability that the lineage of this cell eventually disappears can be
written as∑
y1,y2≥0

P
[
Y1(T − s) = y1, Y2(T − s) = y2

]
χy11 χ

y2
2 = φm=2(χ1, χ2, T − s).

Following the arguments of previous sections, the probability that no
type 1 mutation leading to treatment failure arises during expansion can be
written as

p↑m=2 = exp

{
−
∫ T

0
buν1x0(s)

[
1− φm=2(χ1, χ2;T − s)

]
ds

}
. (23)

This formula involves the expression φm=2(χ1, χ2;T − s). This expres-
sion cannot be evaluated directly using formula (14) for φm=2, obtained by
Antal and Krapivsky (2011), because this formula is undefined (has a re-
movable singularity) at z2 = χ2 = d/b. We therefore derive an expression
for φm=2(z1, d/b; t) from first principles. To begin, we note that dynamics
of the two-type branching process (13) satisfy the backward Kolmogorov
equations, which can be written as:

∂tφ = bφ2 + d+ bν2uφ φ̃− (b+ d+ bν2u)φ

∂tφ̃ = bφ̃2 + d− (b+ d)φ̃.
(24)

Above, φ ≡ φm=2(z1, z2; t) is the generating function for the two-type process
starting with a cell of type 1, while φ̃(z1, z2; t) is the analogous generating
function starting with a cell of type 2. From the second equation in (24),
we can see that

φ̃(z1, d/b; t) = d/b,

for all z1 and all t > 0. Thus, for the fixed value z2 = χ2 = d/b, the
backward Kolmogorov equations (24) reduce to

∂tφ = bφ2 − (b+ d+ rν2u)φ+ d.

This is a Ricatti equation with constant coefficients, which can be solved
using standard techniques. We find the solution

φm=2(z1, χ2; t) = 1−

θ+e
bθ+t

1− z1 − θ+
− θ−e

bθ−t

1− z1 − θ−
ebθ+t

1− z1 − θ+
− ebθ−t

1− z1 − θ−

. (25)

Above,

θ± =
1

2

[
r

b
(1− uν2)±

√(r
b

(1− uν2)
)2

+ 4uν2
r

b

]
. (26)
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5.1.3 Low-mutation expansion for two-step paths

We now derive an expression for p↑m=2, the probability that no resistance
arises via the path in question during tumor expansion, that is asymptoti-
cally exact in the limit of small mutation rate u and large detection size M .
We know χ2 = d/b, and from (22) we have

χ1 = 1 + uν2
r

b

b′

r′
+O(u2).

The formula (26) for θ± admits the following low-mutation expansions:

θ+ =
r

b
+O(u), θ− = −uν2 +O(u2).

We substitute these expansions into (25) and note that, for values of t that
contribute significantly to the integral in (23) (with t identified as T − s),
the terms containing ert eclipse those that are constant in t. As u→ 0 and
ert →∞, we have

1− φ(χ1, χ2, t)→
r

b

(
1 +

1

uν2a
e−rt

)−1
, a =

b

r
− b′

r′
. (27)

To obtain p↑m=2 we substitute (27) into (23), which yields

p↑m=2
M→∞−−−−−−−→

Mu2=const.
exp

(
−buν1

∫ T

0

1

e−rs +A
ds

)
, A = (auν2e

rT )−1.

(28)
The integral on the right-hand side above simplifies as follows:∫ T

0

1

e−rs +A
ds =

1

Ar
log

1 +AerT

1 +A

erT→∞−−−−−→ 1

Ar
log

AerT

1 +A
.

Finally, by expressing everything in terms of the tumor size at detection,
M = b/r erT , we arrive at

p↑m=2
M→∞−−−−−−−→

Mu2=const.
exp

[
Mu2ν1ν2a log

(
b

rM
+ uν2a

)]
, a =

b

r
− b′

r′
.

(29)

5.2 Resistance arising during treatment

5.2.1 One-step paths

For one-step paths, the probability that no resistance arises during treatment
was obtained by Michor et al. (2006):

p↓m=1 = exp

(
Muν1

r

b

b′

r′

)
. (30)
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5.2.2 Two-step paths

During treatment, type 1 mutations arise from type 0 cells at rate b′uν1x0(t)
per unit time. Each such type 1 mutation has probability 1−χ1 of avoiding
disappearance due to drift and eventually causing relapse, where χ1 is the
extinction probability given by (22). Thus the probability that no type 1
mutations leading to relapse arise during treatment is given by

p↓m=2 = exp

[
−b′uν1

∫ ∞
0

Mer
′s(1− χ1) ds

]
= exp

[
b′

r′
uν1M(1− χ1)

]
M→∞−−−−−−−→

Mu2=const.
exp

[
−Mu2ν1ν2

r

b

(
b′

r′

)2
]
.

(31)

5.3 Overall probability of tumor eradication

One drug For single-drug therapy, the probability of eradication is ob-
tained by combining (21) and (30):

perad = p↑0→1p
↓
0→1 = exp

(
−Mun1

r

b
a
)
, a =

b

r
− b′

r′
.

Two drugs The probability of eradication for two-drug combination ther-
apy can be written as perad = p↑1 p

↓
1 p
↑
2 p
↓
2, where the subscript 1 refers to the

path 00 → 11 and the subscript 2 refers to the paths 00 → 10 → 11 and
00→ 01→ 11. From (21) and (30) respectively, with ν1 = n12, we have

p↑1 = exp(−Mun12),

and

p↓1 = exp

(
−Mun12

r

b

b′

r′

)
.

From (30), and (31) repsectively, with ν1 = n1, ν2 = n2 + n12 for the path
00 → 10 → 11, and ν1 = n2, ν2 = n1 + n12 for the path 00 → 01 → 11, we
have

p↑2 = exp

{
Mu2a

[
n1(n2 + n12) log

(
b

rM
+ u(n2 + n12)a

)
+ n2(n1 + n12) log

(
b

rM
+ u(n1 + n12)a

)]}
,
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and

p↓2 = exp

[
−Mu2

(
2n1n2 + n12(n1 + n2)

)r
b

(
b′

r′

)2
]
,

with a = b/r − b′/r′ as above. Substituting r/b = s and r′/b′ = s′ yields
the formulas presented in the main text. We can also combine the above
expressions to obtain

perad = exp

{
−Mun12

r

b
a

+Mu2n1(n2 + n12)

[
r

b

(
b′

r′

)2

+ a log

(
b

rM
+ u(n2 + n12)a

)]

+Mu2n2(n1 + n12)

[
r

b

(
b′

r′

)2

+ a log

(
b

rM
+ u(n1 + n12)a

)]}
. (32)

Formula (32) improves on prior results of Komarova (2006), as we discuss
in Section 6.3.

6 Comparison to previous results

Aspects of the dynamics of combination cancer therapy and resistance have
been investigated in a number of previous works—notably Komarova and
Wodarz (2005), Komarova (2006), and Haeno et al. (2007). Our results
improve on the results previously obtained in these works and provide a
closer match to simulations. This improvement is due in part to our use of
recent advances in the theory of branching processes (Antal and Krapivsky,
2011), which allow us to obtain results that are asymptotically exact in the
rare-mutation, large-tumor-size limit.

6.1 Expected number of resistant cells at detection

The question of the expected number of resistant cells in a tumor of de-
tectable size has also been investigated by Iwasa et al. (2006), in the case
of one drug, and Haeno et al. (2007), in the case of two drugs (with no
mutations conferring resistance to both simultaneously).

For one drug, in the case that resistant cells have the same division and
death rates as sensitive cells in the absence of treatment, formula (10) of
Iwasa et al. (2006) gives the following expression for the expected number
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of resistant cells:

xdetres ≈M
b

r
n1u log(M). (33)

Comparing to our result (9), we see that Iwasa et al.’s coincides with ours
(to first order in u) except that log(Mr/b) in (9) is replaced by log(M) in
(33). This discrepancy arises from the fact that Iwasa et al. assume the
sensitive cell population grows deterministically as ert, and do not condition
on survival of the tumor. We compare Iwasa et al.’s formula (33) and ours
(9) to simulation results in Table S1.

In the case of two drugs, Haeno et al. (2007) derive the following expres-
sion for the average number resistant cells:

xdetres ≈ 2

(
b

r

)2

n1n2u
2
M−1∑
x=1

M

x
log

M

x
. (34)

Upon applying the approximation

M−1∑
x=1

M

x
log

M

x
≈

∫ M

1

M

x
log

M

x
dx =

1

2
M log(M)2,

formula (34) becomes

xdetres ≈
(
b

r

)2

n1n2u
2 log(M)2.

As in the result of Iwasa et al. (2006), this expression differs from ours
only in the replacement of log(Mr/b) by log(M), which again arises because
Haeno et al. do not condition on survival of the tumor. We compare this
expression to our formula (10) in Table S2.

For three or more drugs (or for drug resistance requiring three or more
mutational steps) our formulas (5), (8), and (11) provide the first closed-
form expressions for the expected number of fully resistant cells at time of
detection.

6.2 Probability of resistance at detection

Haeno et al. (2007) also derive expressions for P
[
X2(T ) > 0

]
, the proba-

bility that resistance requiring two mutational steps is present at the time
of detection. Their expressions are derived using approximate solutions to
the differential equations that define the generating function φm=2(z1, z2; t)
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M n1 Simulation This work, Eq. (9) Iwasa et al., Eq. (33)

105 1 53 50 58
105 10 510 494 575
105 100 4900 4831 5754
107 1 76 73 81
107 10 740 725 806
107 100 7400 7252 8059
109 1 96 96 104
109 10 920 956 1036
109 100 9800 9557 10361

Table S1: Comparison of formulas and simulation results for the expected number
of resistant cells at detection for the case of one drug. Parameter values are b = 0.25,
d = 0.2, and u = 1/M for each value of M . 108 simulation runs were used per
parameter combination.

M n1 n2 Simulation
This work,
Eq. (10)

Haeno et al.,
(34)

105 10 10 2.7 2.5 3.6
105 100 100 250 245 365
105 1000 1000 14000 24520∗ 36133
107 10 10 0.05 0.05 0.07
107 100 100 5.6 5.26 6.96
107 1000 1000 550 526 696
109 10 10 0.001 0.001 0.001
109 100 100 0.09 0.09 0.11
109 1000 1000 9.4 9.1 11.3

Table S2: Comparison of formulas and simulation results for the expected number
of resistant cells at detection for the case of two drugs. Parameter values: b =
0.25, d = 0.2, u = 1/M , n12 = 0. 108 simulation runs were used per parameter
combination. ∗The high degree of inaccuracy for this parameter combination occurs
because un1 = un2 = 10−2 is sufficiently large to introduce errors in approximations
that assume uni � 1.
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M Sim.

This work,
Eq. (17)
(exact)

This work,
Eq. (20)

(closed-form)

Haeno et
al., Eq. (35)

Haeno et
al., Eq. (36)

5× 108 0.10 0.10 0.17 0.32 0.029
1× 109 0.20 0.20 0.32 0.57 0.051
2× 109 0.36 0.35 0.55 0.9 0.09
3× 109 0.48 0.48 0.70 * 0.12
5× 109 0.67 0.66 0.88 * 0.17
1× 1010 0.89 0.89 0.98 * 0.27

Table S3: Probability pres of resistance at detection for dual therapy with no
cross-resistance, as calculated using simulation, using our formulas (17) and (20),
and using the formulas (35) and (36) of Haeno et al. (2007). Parameter values are
u = 10−8, n1 = n2 = 100, b = b′ = 0.25, d = 0.2. *Here Haeno et. al’s formula fails
by giving a probability greater than 1.

(see Appendix A). In contrast, our formulas (17) and (20) for P
[
X2(T ) = 0

]
utilize the exact solution obtained by Antal and Krapivsky (2011).

The two formulas derived by Haeno et al. (2007) both describe the prob-
ability that, at the time of detection, at least one cell contains two mutations
arising in a specified order. (In other words, their formulas apply to the case
of a particular two-step path.) Their main formula can be expressed in our
notation as

P
[
X2(T ) > 0

]
= −Mu2ν1ν2 log(uν2)

(1− d/b)2
. (35)

They also present an alternative formula:

P
[
X2(T ) > 0

]
=

M∑
x=1

e−uν1(x−1)
(
1− e−uν1

) [
1− exp

(
− Mu2

(1− d/b)(x+ 1)

)]
.

(36)
In Table S3 we compare values of the overall probability of no resistance

at detection pres (along all paths) as obtained from simulation, as derived
from our formulas (17) and (20), and as derived from formulas (35) and (36)
of Haeno et al. (2007).

6.3 Probability of tumor eradication

Turning to the question of whether therapy will successfully eradicate a
tumor, our results in the case of one-step paths to resistance agree with
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those of Komarova (2006) and Michor et al. (2006), as noted where these
results are presented.

For two-step paths, Komarova (2006) obtained closed-form approxima-
tions for the probability of tumor eradication, in the special case that an
equal number of mutations are required for each step (ν1 = ν2), and that
treatment affects only the death rate of tumor cells, not the division rate
(b′ = b).

Komarova’s (2006) expression for the probability p↑—that no mutations
leading to eventual relapse arise during tumor expansion—can be expressed
in our notation as

p↑ = 1−M(uν)2
b

r
log

(
M

M0
− 1

)
. (37)

Above, ν = ν1 = ν2 is the number of resistance mutations at each step, and
M0 is an extra parameter representing tumor’s initial size. Our approach
of considering the entire history of the tumor, conditioned on its survival,
amounts to setting M0 = b/r. (We also note that Komarova uses P ↑ and P ↓

to denote the probabilities that mutations leading to relapse do arise during
the two respective phases; thus P ↑ in Komarova’s notation corresponds to
1− p↑ in ours, and similarly for P ↓ and p↓.)

The approximation (37) for p↑ is based on first determining the probabil-
ity that at least one type 2 mutation arises, then multiplying that quantity
by the survival probability of each such mutation. This method is accurate
if few type 2 mutants are likely to be generated (Mu2ν2 . 1), but loses
accuracy if many type 2 mutations may arise, because it does not take into
account the individual fate of each mutation. Our expression (29), based
on the exact formula for φm=2(z1, z2; t) obtained by Antal and Krapivsky
(2011), does not have this limitation.

For the probability p↓ that no mutations leading to relapse arising during
treatment, Komarova (2006) obtained

p↓ =

[
1− (uν)2

br

(r′)2

]M
≈ exp

[
−M(uν)2

br

(r′)2

]
. (38)

This expression coincides with our formula (31) in the special case ν1 = ν2 =
ν and b′ = b. Our result (31) can therefore be seen as a generalization of
Komarova’s result (38) to the case that mutation numbers may be unequal
and treatment may affect tumor cell division rates.

Table S4 compares our formula (32) for the overall probability perad of
tumor eradication for two-drug therapy to the results of Komarova (2006).
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M Simulation This work, Eq. (32) Komarova (2006)

109 0.79 0.79 0.80
2× 109 0.63 0.62 0.59
3× 109 0.50 0.49 0.38
4× 109 0.39 0.38 0.17
5× 109 0.31 0.30 *

Table S4: Probability perad of tumor eradication as calculated using simulation,
using our formula (32), and using the formulas (37) and (38) of Komarova (2006).
Parameter values are u = 10−8, n1 = n2 = 100, b = b′ = 0.25, d = 0.2, d′ = 0.3.
*Here Komarova’s formula fails by giving a negative answer.

Finally, we note that Komarova (2006) also provides computational recipes
to obtain probabilities for treatment success to arbitrary numerical preci-
sion. This methodology has been applied to a number of specific questions
regarding treatment of chronic myeloid leukemia (Komarova and Wodarz,
2005; Komarova et al., 2009; Katouli and Komarova, 2010; Komarova, 2011).

7 Proof of Identity (7)

In this section we prove the mathematical identity used in Section 2.1. We
state this identity in an equivalent form:

Theorem 1. For any collection of m distinct nonzero real numbers α1, . . . , αm
and any integer 0 ≤ s ≤ m,

m∑
j=1

αs−1j∏
1≤`≤m
` 6=j

(α` − αj)
=


1∏m

`=1 α`
s = 0

0 1 ≤ s ≤ m− 1

(−1)m+1 s = m.

(39)

Proof. Our proof is based on Cauchy’s residue theorem of complex analysis.
Consider the meromorphic function

F (z) =
zs−1∏m

`=1(α` − z)
.

Now consider a closed curve γ in the complex plane, whose interior contains
the points α1, . . . , αm, as well as zero. Applying the residue theorem and
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Cauchy’s integral formula yields

1

2πi

∮
γ
F (z) dz =



−
m∑
j=1

αs−1j∏
1≤`≤m
` 6=j

(α` − αj)
s ≥ 1

−
m∑
j=1

αs−1j∏
1≤`≤m
` 6=j

(α` − αj)
+

1∏m
`=1 α`

s = 0.

(40)

On the other hand, since F has no poles outside of γ other than possibly
at ∞ (in the case s ≥ m) we can also express this integral in terms of the
residue of F at ∞:

1

2πi

∮
γ
F (z) dz = Res [F (z),∞]

= Res
[
z−2F (z−1), 0

]
.

We rewrite

z−2F (z−1) =
z−s−1∏m

`=1(α` − z−1)

=
zm−s−1∏m

`=1(α`z − 1)
.

Cauchy’s integral formula then gives

Res [F (z),∞] =

0 0 ≤ s ≤ m− 1

1

(m− s)!
dm−s

dzm−s

∣∣∣
z=0

1∏m
`=1(α`z − 1)

s ≥ m.

In particular, for s = m we have Res [F (z),∞] = (−1)m. Combining with
(40) verifies the desired result (39), and moreover, provides a method to
calculate similar expressions with s > m.
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